Jinan University

Faculty of Business Administration Tripoli - Lebanon

General Mathematics

Preparatory Entrance Exam

Version 1

© 2011-2010

General Mathematics

Jinan University
Faculty of Business Administrations

Contents

1	Functions, Limits, and Continuity	3
2	Derivatives	5
3	Integrals	7
1	Differential Equations	q

1 Functions, Limits, and Continuity

THE STUDY OF A REAL FUNCTION

- 1. Find the domain of definition D_f of the function f (when it is not given).
- 2. Study the limits of f. We study the limits of the function f at the end points of the domain of definition D_f , and deduce the asymptotes of f.
 - (a) Horizontal asymptote: if $\lim_{x\to +\infty} f(x) = a$ (respectively $\lim_{x\to -\infty} f(x) = a$), then the line of equation y=a is a horizontal asymptote of f at $+\infty$ (respectively at $-\infty$).
 - (b) Verticale asymptote: if $\lim_{x\to a} f(x) = +\infty$ (respectively $\lim_{x\to a} f(x) = -\infty$), then the line of equation x = a is a vertical asymptote of f at $+\infty$ (respectively at $-\infty$).
 - (c) **Oblique asymptote:** Let (D) be the line of equation y = ax + b. If $\lim_{x \to +\infty} [f(x) (ax + b)] = 0$ (respectively $\lim_{x \to -\infty} [f(x) (ax + b)] = 0$), then (D) is an oblique asymptote of f at $+\infty$ (respectively at $-\infty$).
- 3. Calculate the first derivative of f
- 4. Draw the table of variation of f
- 5. Contruct the asymptotes and the representative curve (C_f) of f, using the particular points.

Exercise 1.1 Study the limits of f at the end points of its.

1.
$$f(x) = x^3 - 2x^2 - 4x - 1$$
.

Answer: $\pm \infty$.

2.
$$f(x) = \frac{x^2 - x + 5}{2x - 3}$$
.

Answer: $\pm \infty$.

3.
$$f(x) = \frac{x^2 + 2x + 2}{x^2 - 3x - 4}$$
.

Answer: $1, \pm \infty$.

4.
$$f(x) = -x + 1 + \frac{1}{x+2}$$
.

Answer: $\mp \infty$.

Exercise 1.2 Let f be a function defined on $]0, +\infty[$ by $f(x) = \sqrt{x+1} - \sqrt{x}$.

- 1. Show that $0 \le f(x) \le \frac{1}{2\sqrt{x}}$ for all x > 0.
- 2. Deduce the limit of f at $+\infty$.

Answer: 0.

Exercise 1.3 Find the following limits:

$$1. \lim_{x \to +\infty} \sqrt{\frac{4x+1}{x-1}}.$$

Answer: 2.

$$2. \lim_{x \to +\infty} \sqrt{\frac{x^2 - 1}{4x^2}}.$$

Answer: 1/2.

2 Derivatives

In the 19th century, economists developed the concept of marginal analysis, such as marginal cost,marginal product and others...

If C(x) is the total cost of manufacturing x units of a certain item, once x items have been produced, C'(x) is the marginal cost.

Standard Formula:

f'(x)
0
nx^{n-1}
e^x
$\frac{1}{x}$
$-\frac{1}{x^2}$
$-\frac{1}{2\sqrt{x}}$

Exercise 2.1 Find the derivative of each of the following functions f:

1.
$$f(x) = \frac{3x+1}{x-3}, x \in]-\infty, 3[\cup]3, +\infty[.$$

Answer:
$$\frac{-10}{(x-3)^2}.$$

2.
$$f(x) = \frac{2x+3}{x^4+1}$$
.

Answer: $\frac{-6x^4 - 12x^3 + 2}{(x^4+1)^2}$

Exercise 2.2 Let I be an interval of \mathbb{R} , and let $u: I \longrightarrow \mathbb{R}$ is differentiable in I. Find the derivative of each of the following functions:

1. $[u(x)]^n \ (n \in \mathbb{N}^*)$.

Answer: $n[u(x)]^{n-1}u'(x)$.

2. $e^{u(x)}$.

Answer: $e^{u(x)}u'(x)$.

3. $\sqrt{u(x)}$ (on suppose que u(x) > 0).

Answer: $\frac{u'(x)}{2\sqrt{u(x)}}$.

4. ln|u(x)| (on suppose que $u(x) \neq 0$ pour tout $x \in I$).

Answer: $\frac{u'(x)}{u(x)}$.

3 Integrals

Standard Formula:

$\int f(x)dx$	F(x)
$\int x^n dx$	$\frac{x^{n+1}}{n+1} + c$
$\int e^x dx$	$e^x + c$
$\int \frac{1}{x} dx$	ln x + c
$\int \frac{1}{x^2} dx$	$-\frac{1}{x}$
$\int \sqrt{x} dx$	$-\frac{2}{3}x\sqrt{x} + c$

Exercise 3.1 Calculate the following integrals:

1.
$$\int (4x^3 - 2x + 1)dx \ x \in]0, +\infty[.$$

Answer: $x^4 - x^2 + x + c$.

2.
$$\int (\frac{2}{x} + e^x) dx$$
. $x \in]-\infty, 0[\cup]0, +\infty[$.

Answer: $2ln|x| + e^x + c$.

Exercise 3.2 Calculate the following definite integrals:

1.
$$\int_{1}^{e} lnx dx.$$

Answer: 1.

$$2. \int_0^1 x^2 e^x dx.$$

Answer: e-2.

3.
$$\int_0^1 \frac{1}{(x+1)(x+2)} dx$$

 $Answer:\ 2ln 2\text{-}ln 3.$

4 Differential Equations

An equation involving an unknown function and one or more of its derivatives is called a differential equation. The order of a differential equation is the order of the highest derivative that appear in it.

Exercise 4.1 Solve the following differential equations:

1.
$$x' - x = 0$$

Answer: $x = ke^t$.

$$2. tx' - x = 0$$

Answer: x = kt.

Exercise 4.2 Solve the following differential equations:

1.
$$x'' - 3x' + 2x = 0$$

Answer: $x = C_1 e^t + C_2 e^{2t}$.

2.
$$x'' + 4x' - 5x = 0$$

Answer: $x = C_1 e^t + C_2 e^{-5t}$.

3.
$$x'' + 7x' + 6x = 0$$

Answer: $x = C_1 e^{-t} + C_2 e^{-6t}$.